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* Grothendieck: "A topos is a generalized topological space"
* ... it's represented by its category of sheaves
* but that depends on choice of base "category of sets"
* Joyal's arithmetic universes (AUs) for base-independence
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Overall story

Open = continuous map valued in truth values
- Theorem: open = map to Sierpinski space $

Sheaf = continuous set-valued map
- no theorem here - "space of sets" not defined in standard topology
- motivates definition of local homeomorphism
- each fibre is discrete
- somehow, fibres vary continuously with base point

Can define topology by defining sheaves
- opens are the subsheaves of 1

But why would you do that?
- much more complicated than defining the opens



Generalized spaces (Grothendieck toposes) But why would you do that?
- much more complicated than 
defining the opens

Grothendieck discovered generalized spaces
- there are not enough opens
- you have to use the sheaves
- e.g. spaces of sets, or rings, of local rings
- set-theoretically - can be proper classes
- generalized topologically:
- specialization order becomes specialization morphisms
- continuous maps must be at least functorial and preserve filtered colimits
- cf. Scott continuity



Outline

Point-free "space" = space of models of a geometric theory
- geometric maths = colimits + finite limits
- constructive
- includes free algebras, finite powersets
- but not exponentials, full powersets
- only a fragment of elementary topos structure
- fragment preserved by inverse image functors

Space represented by classifying topos
  = geometric maths generated by a generic point (model)

"continuity = geometricity"
- a construction is continuous if can be performed in geometric maths
- continuous map between toposes = geometric morphism
- geometrically constructed space = bundle,   point |-> fibre
- "fibrewise topology of bundles"

cf. unions, finite 
intersections of opens



Outline of tutorials

1. Sheaves: Continuous set-valued maps

2. Theories and models: Categorical approach to many-sorted first-order 
theories.

3. Classifying categories: Maths generated by a generic model

4. Toposes and geometric reasoning: How to "do generalized topology".
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1. Sheaves

Local homeomorphism viewed as continuous 
map base point |-> fibre (stalk)

Alternative definition via presheaves

Idea: sheaf theory = set-theory "parametrized by 
base point"

Constructions that work fibrewise
- finite limits, arbitrary colimits
- cf. finite intersections, arbitrary unions for opens
- preserved by pullback

Interaction with specialization order
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2. Theories and models
(First order, many sorted)

Theory = signature + axioms
Context = finite set of free variables
Axiom = sequent

Models in Set
- and in other categories

Homomorphisms between models

Geometric theories

Propositional geometric theory => topological 
space of models.

Generalize to predicate theories?

Describe so can be 
easily generalized from 
Set to any category with 
suitable structure
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3. Classifying categories

Geometric theories may be incomplete
- not enough models in Set
- category of models in Set doesn't fully describe 
theory

Classifying category - e.g. Lawvere theory
= stuff freely generated by generic model
- there's a universal characterization of what this 
means

For finitary logics, can use universal algebra
- theory presents category (of appropriate kind) 
by generators and relations

For geometric logic, classifying topos is 
constructed by more ad hoc methods.

generalizes Lindenbaum algebra

Let M be a model 
of T ...
  :
  :
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4. Toposes and geometric reasoning

Classifying topos for T represents "space of 
models of T"

It is "geometric mathematics freely generated by 
generic model of T"

Map = geometric morphism
= result constructed geometrically from generic 
argument

Bundle = space constructed geometrically from 
generic base point
- fibrewise topology

Arithmetic universes for when you don't want to 
base everything on Set

Constructive!
No choice
No excluded middle



Universal property of classifying topos Set[T]

1. Set[T] has a distinguished "generic" model M of T.

2. For any Grothendieck topos E,
and for any model N of T in E,
there is a unique (up to isomorphism) functor f*: Set[T] -> E
that preserves finite limits and arbitrary colimits
and takes M to N.

f* preserves arbitrary colimits
- can deduce it has right adjoint

These give a geometric morphism f: E -> Set[T]
- topos analogue of continuous map

More carefully: categorical equivalence between -
- category of T-models in E
- category of geometric morphisms E -> Set[T]

Same idea as for frames



Reasoning in point-free logic

Let M be a model of T ...

Reasoning here must be geometric
- finite limits, arbitrary colimits
- includes wide range of free algebras
- e.g. finite powerset
- not full powerset or exponentials
- it's predicative

Box is classifying topos Set[T]
Its internal mathematics is
- geometric mathematics
freely generated
by a (generic) model of T

To get f* to another topos E:
Once you know what M maps to (a model in E)
- the rest follows
- by preservation of colimits and finite limits



Reasoning in point-free logic

Let M be a model of T_1 ...

Geometric reasoning
- inside box

 Then f(M) = ... is a model of T_2

Get map (geometric morphism) f: Set[T_1] -> Set[T_2]

Outside box



Reasoning in point-free topology: examples

Dedekind sections, e.g. (L_x, R_x)



Fibrewise topology

Let M_G be a point of T1 ...
   :
   :
Then F(M_G) is a space

Externally: get theory T2, models = pairs (M, N) where
- M a model of T1
- N a model of F(M)

Map p: Set[T2] -> Set[T1]
- (M,N) |-> M

Think of p as bundle, base point M |-> fibre F(M)

geometric theory

S[T1]



Reasoning in point-free topology: examples

Let (x,y) be on the unit circle

Then can define presentation for a subspace of RxR,
the points (x', y') satisfying
  xx' + yy' = 1

It's the tangent of the circle at (x,y)

This construction is geometric

Inside the box:
For each point (x,y), a space T(x,y)

Outside the box:
Defines the tangent bundle of the circle. T(x,y) is the fibre at (x,y)

Fourman & Scott; Joyal & Tierney:
Internal point-free space = external bundle

fibrewise topology of bundles



Example: "space of sets" (object classifier)

Theory        one sort, nothing else.

Classifying topos

Conceptually object = continuous map {sets} -> {sets}
Continuity is (at least) functorial + preserves filtered colimits
Hence functor {finite sets} -> {sets}

Generic model is the subcategory inclusion Inc: Fin -> Set



Example: "space of pointed sets"

Theory              one sort X, one constant x: 1 -> X.

Classifying topos

In slice category: 1 becomes Inc, Inc becomes Inc x Inc

Generic model is Inc with

1 in slice Inc in slice



Generic local homeomorphism

"space of pointed sets"

"space of sets"

forget point

p is a local homeomorphism

Over each base point (set) X, fibre is discrete space for X

Every other local homeomorphism is a pullback of p



Suppose you don't like Set?

Replace with your favourite elementary topos S.
Needs nno N.

Fin becomes internal category in S.

n = {0, ..., n-1}

Classifying topos becomes
- category of internal diagrams on Fin

Finite functions
f: m -> n

X(n) = fibre over n(f: m -> n, x in X(m))

X(f)(x) in X(n)

Other classifier is slice, as before.

the base topos

Suppose you don't like 
impredicative toposes?

Be patient!



Generic local homeomorphism

"space of pointed sets"

"space of sets"

forget point

p is a local homeomorphism

Over each base point (set) X, fibre is discrete space for X

Every other local homeomorphism is a pullback of p between toposes 
bounded over S



Roles of S

(1) Supply infinities for infinite disjunctions:
get theories T geometric over S.

(2) Classifying topos built over S: geometric morphism

Infinities are extrinsic to logic
- supplied by S



Suppose T has disjunctions all countable

It's geometric over any S with nno.

But different choices of S give different classifying toposes.

Idea: use finitary logic with type theory that provides nno
- replace countable disjunctions by existential quantification over 
countable types
- they become intrinsic to logic
- a single calculation with that logic gives results valid over any 
suitable S

cf. suggestion in Vickers "Topical categories of domains" (1995)



Arithmetic universes instead of Grothendieck toposes

Pretopos - finite limits
coequalizers of equivalence relations
finite coproducts

+ all well behaved

+ set-indexed coproducts
+ smallness conditions

Giraud's theorem

Grothendieck toposes
bounded S-toposes

extrinsic infinities from S

+ parametrized list objects

Arithmetic universes (AUs)

intrinsic infinities
e.g. N = List(1)



Aims

- Finitary formalism for geometric theories

- Dependent type theory of (generalized) spaces

- Use methods of classifying toposes in base-independent way

- Computer support for that

- Foundationally very robust - topos-valid, predicative

- Logic intemalizable in itself
  (cf. Joyal applying AUs to Goedel's theorem)



Classifying AUs

Universal algebra => AUs can be presented by
- generators (objects and morphisms)
- and relations

(G, R) can be used as a logical theory

AU<G|R> has property like that of classifying toposes

Treat AU<G|R> as "space of models of (G,R)"
- But no dependence on a base topos!

theory of AUs is cartesian
(essentially algebraic)



Issues: How to present theories?

Not pure logic - needs ability to construct new sorts, e.g. N, Q

Use sketches - hybrid of logic and category theory
- sorts, unary functions, commutativities
- universals: ability to declare sorts as finite limits, finite colimits or list 
objects

"Arithmetic" instead of geometric



e.g. binary operations (M, m)



Issues: strictness

Strict model - interprets pullbacks etc. as the canonical 
ones
- needed for universal algebra of AUs

But non-strict models are also needed for semantics

Contexts are sketches built in a constrained way
- better behaved than general sketches
- every non-strict model has a canonical strict isomorph

Con is 2-category of contexts
- made by finitary means

The assignment T |-> AU<T>
is full and faithful 2-functor
- from contexts
- to AUs and strict AU-functors (reversed)

"Sketches for arithmetic universes"

A base-independent category of 
(some) generalized point-free 
spaces



Models in toposes

Suppose T a context (object in Con),

E an elementary topos with nno

Then have category E-Mod-T of strict T-models in E

If H: T1 -> T2 a context map (1-cell in Con), then get

  E-Mod-H: E-Mod-T1 -> E-Mod-T2,   M |-> MH

- but the same works for models in 
AUs

2-cells give natural transformations

E-Mod is strict 2-functor Con -> Cat

map H as model 
transformer



Models in different toposes

If f: E1 -> E2 a geometric morphism,
  then inverse image part f*: E2 -> E1 is a non-strict AU-functor

We get

  f-Mod-T: E2-Mod-T -> E1-Mod-T,   M |-> f*M

Apply f* (giving non-strict model), and then take canonical strict 
isomorph

f |-> f-Mod-T is strictly functorial!

Mod-T is a strictly indexed category over Top

toposes with nno,
geometric morphisms



Bimodule identity

In general:

   (f*M)H   isomorphic to    f*(MH)

However, for certain well-behaved H (extension maps) have

  (f*M)H = f*(MH)

Extension maps also have strict pullbacks along all 1-cells in Con



Bundles U an extension map (in Con)
As map, U transforms models:
T_1 models N
  |-> T_0 model NU

Bundle view says U transforms T_0 models to spaces, the fibres:

   M |-> "the space of models N of T_1 such that NU = M"

Suppose M is a model in an elementary topos (with nno) S.
Then fibre exists as a generalized space in Grothendieck's sense
- get geometric theory T_1/M (of T_1 models N with NU = M)
- it has classifying topos

"Arithmetic universes and classifying 
toposes":

all fibred over 2-category of pairs (S, M)



Change of S

Get pseudopullback -

bounded

not necessarily bounded



Example: local homeomorphisms

Theories of sets and of pointed sets can be expressed with a context 
extension map

one sort

one sort,
one constant

Model of [O] in S is object X of S
S[O,pt / X] is discrete space for X over S

p is a local homeomorphism

Every local homeomorphism between elementary toposes with nno 
can be got this way - not dependent on choosing some base topos



Conclusions

Con is proposed as a category of a good fragment of Grothendieck's 
generalized spaces
- but in a base-independent way
- consists of what can be done in a minimal foundational setting
- of AUs
- constructive, predicative
- includes real line

Current work (with Sina Hazratpour)

- use calculations in Con to prove fibrations and opfibrations in Top.



References for AUs
Maietti:
"Joyal's Arithmetic Universes via Type Theory" ENTCS 69 (2003)
"Modular Correspondence between Dependent Type Theories and 
Categories including Pretopoi and Topoi" MSCS (2005)
"Reflection into Models of Finite Decidable FP-sketches in an Arithmetic 
Universe" ENTCS 122 (2005)
"Joyal's Arithmetic Universe as List-Arithmetic Pretopos" TAC (2010)

Taylor:
"Inside every model of ASD lies an Arithmetic Universe" ENTCS 122 
(2005) 

Maietti, Vickers:
"An induction principle for consequence in arithmetic universes", JPAA 
(2012)

Vickers:
"Sketches for arithmetic universes" (arXiv:1608.01559)
"Arithmetic universes and classifying toposes" (arXiv:1701.04611)


